

Heavy Ion Current Transients in SiGe HBTs

Jonathan A. Pellish¹, R. A. Reed², G. Vizkelethy³, D. McMorrow⁴, V. Ferlet-Cavrois⁵, J. Baggio⁵, P. Paillet⁵, O. Duhamel⁵, S. D. Phillips⁶, A. K. Sutton⁶, R. M. Diestelhorst⁶, J. D. Cressler⁶, P. E. Dodd³, M. L. Alles², R. D. Schrimpf², P. W. Marshall⁷, and K. A. LaBel¹

1: Radiation Effects and Analysis Group, NASA/GSFC Code 561.4, Greenbelt, MD 20771

²: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235

3: Sandia National Laboratories, Albuquerque, NM 87175

4: Naval Research Laboratory, Washington, DC 20375

5: The CEA, DAM, DIF, F-91297 Arpajon, France

⁶:School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332

⁷: NASA Consultant, Brookneal, VA 25428

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04 94AL85000.

Overview

- Look at device under test (IBM 5AM SiGe HBT)
- Review bias conditions of interest
 - Relation to findings of previous experiments
- Heavy ion microbeam data
 - 36 MeV ¹⁶O (SNL)
- Heavy ion broadbeam data
 - Low- and high-energy tunes (JYFL and GANIL)
- Path forward and summary

Device Background and Introduction

Key device characteristics

- Deep trench isolation
- Subcollector junction
- Lightly-doped p-type substrate (large)
- Extend state-of-the-art knowledge
 - Move beyond charge collection

IBM 5AM SiGe HBT (0.5 μ m)

J. A. Pellish *et al.*, *IEEE Trans. Nucl. Sci.*, vol. 55, no. 6, p. 2936, Dec. 2008.

Previous measurements on SiGe HBTs have only looked at laser-induced transients or heavy ion charge collection.

Microbeam Experimental Setup

Similar setup for 4-terminal measurements

- PSPL Bias Tees: 5542K
- DPO/DSO: Tek 71604A (16 GHz; 50 GS/s),
 Tek 72004A (20 GHz; 50 GS/s)
- 2.9 mm coaxial cable assemblies (40 GHz)

Sandia National Laboratories'
Microbeam Chamber

Microbeam Experimental Setup

36 MeV ¹⁶O d*E*/d*x* profile [SRIM-2008]

Sandia National Laboratories'
Microbeam Chamber

2 CASE

Bias Conditions of Interest

- 3-D TCAD
- Rendering from GDSII of actual DUTs

36 MeV ³⁶O Microbeam Data: Case 1

Peak Current Magnitude

- Base terminal images base-collector junction
- Collector terminal images base-collector junction and subcollector

36 MeV ³⁶O Microbeam Data: Cases 2 & 3

Peak Current Magnitude

- Significant current magnitude increase for V_c = +3 V
- Observed in two-photon pulsed laser testing too

J. A. Pellish et al., IEEE Trans. Nucl. Sci., vol. 55, no. 6, p. 2936, Dec. 2008.

TPA Pulsed Laser vs. Microbeam

Both data sets for CASE 1 (V_{sub} = -4 V)

TPA Pulsed Laser

Microbeam

Heavy Ion Broadbeam Transients

University of Jyväskylä K-130 Cyclotron

- Data collection at the University of Jyväskylä, Finland and GANIL, France
- 9.3 MeV/u cocktail including ²⁰Ne, ⁴⁰Ar, ⁸²Kr, and ¹³¹Xe and 45.5 MeV/u ¹³⁶Xe

JYFL Broadbeam Transients

- Typical events observed from events somewhere within active region
- Position inferred using SNL microbeam data

JYFL Broadbeam Transients

Maximum amplitude transients as a function of bias

- Saturation of collector current transient with highly ionizing particle
- Some bias dependence, but masked by random hit location

JYFL vs. GANIL Broadbeam Transients

lon Range

Recombination

- Similar LET values produce different transient responses
- Trend holds for average of all transients for each LET

Influence of Ion Energy

O. Fageeha et al., J. Appl. Phys., vol. 75, no. 5, p. 2317, Mar. 1994.

- Ion energy determines δ-ray energy
- Higher energy ion reduces eh-plasma density
 - Ambipolar and bipolar transport affected by carrier density
 - Space charge screening effects

Path Forward

- Attempt to uncover reason for increase in collector current for $V_c = +3$ V bias condition
 - Impact ionization or other positive feedback mechanism
- Conduct simulation study to understand differences between microbeam and broadbeam data
 - Alleviates some difficulties with modeling TPA data
- Uncover role of ion range and recombination mechanisms in lightly-doped substrates
 - GANIL 45.5 MeV/u ¹³⁶Xe vs. JYFL 9.3 MeV/u ⁸²Kr

Order of Operations

GDSII-to-TCAD 3-D Simulations

Simulation comparison to data

Summary

- Time-resolved ion beam induced charge reveals heavy ion response of IBM 5AM SiGe HBT
 - Position correlation
 - Unique response for different bias schemes
 - Similarities to TPA pulsed-laser data
- Heavy ion broadbeam transients provide more realistic device response
 - Feedback using microbeam data
 - Overcome issues of LET and ion range with microbeam
- Both micro- and broadbeam data sets yield valuable input for TCAD simulations
 - Uncover detailed mechanisms for SiGe HBTs and other devices fabricated on lightly-doped substrates